Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurobiol Dis ; 180: 106085, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36933672

RESUMO

Dynein heavy chain (DYNC1H1) mutations can either lead to severe cerebral cortical malformations, or alternatively may be associated with the development of spinal muscular atrophy with lower extremity predominance (SMA-LED). To assess the origin of such differences, we studied a new Dync1h1 knock-in mouse carrying the cortical malformation p.Lys3334Asn mutation. Comparing with an existing neurodegenerative Dync1h1 mutant (Legs at odd angles, Loa, p.Phe580Tyr/+), we assessed Dync1h1's roles in cortical progenitor and especially radial glia functions during embryogenesis, and assessed neuronal differentiation. p.Lys3334Asn /+ mice exhibit reduced brain and body size. Embryonic brains show increased and disorganized radial glia: interkinetic nuclear migration occurs in mutants, however there are increased basally positioned cells and abventricular mitoses. The ventricular boundary is disorganized potentially contributing to progenitor mislocalization and death. Morphologies of mitochondria and Golgi apparatus are perturbed in vitro, with different effects also in Loa mice. Perturbations of neuronal migration and layering are also observed in p.Lys3334Asn /+ mutants. Overall, we identify specific developmental effects due to a severe cortical malformation mutation in Dync1h1, highlighting the differences with a mutation known instead to primarily affect motor function.


Assuntos
Dineínas , Atrofia Muscular Espinal , Humanos , Camundongos , Animais , Dineínas/genética , Dineínas do Citoplasma/genética , Dineínas do Citoplasma/metabolismo , Atrofia Muscular Espinal/genética , Tamanho do Órgão , Mutação/genética , Encéfalo/metabolismo , Células-Tronco
2.
Mol Psychiatry ; 27(2): 1145-1157, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35169262

RESUMO

Bipolar disorder is a severe and chronic psychiatric disease resulting from a combination of genetic and environmental risk factors. Here, we identified a significant higher mutation rate in a gene encoding the calcium-dependent activator protein for secretion (CADPS) in 132 individuals with bipolar disorder, when compared to 184 unaffected controls or to 21,070 non-psychiatric and non-Finnish European subjects from the Exome Aggregation Consortium. We found that most of these variants resulted either in a lower abundance or a partial impairment in one of the basic functions of CADPS in regulating neuronal exocytosis, synaptic plasticity and vesicular transporter-dependent uptake of catecholamines. Heterozygous mutant mice for Cadps+/- revealed that a decreased level of CADPS leads to manic-like behaviours, changes in BDNF level and a hypersensitivity to stress. This was consistent with more childhood trauma reported in families with mutation in CADPS, and more specifically in mutated individuals. Furthermore, hyperactivity observed in mutant animals was rescued by the mood-stabilizing drug lithium. Overall, our results suggest that dysfunction in calcium-dependent vesicular exocytosis may increase the sensitivity to environmental stressors enhancing the risk of developing bipolar disorder.


Assuntos
Transtorno Bipolar , Animais , Transtorno Bipolar/genética , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio , Exocitose , Humanos , Camundongos , Mutação/genética , Proteínas do Tecido Nervoso , Plasticidade Neuronal , Proteínas de Transporte Vesicular
3.
PLoS One ; 8(9): e74992, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24073232

RESUMO

Mutations in the human X-linked doublecortin gene (DCX) cause major neocortical disorganization associated with severe intellectual disability and intractable epilepsy. Although Dcx knockout (KO) mice exhibit normal isocortical development and architecture, they show lamination defects of the hippocampal pyramidal cell layer largely restricted to the CA3 region. Dcx-KO mice also exhibit interneuron abnormalities. As well as the interest of testing their general neurocognitive profile, Dcx-KO mice also provide a relatively unique model to assess the effects of a disorganized CA3 region on learning and memory. Based on its prominent anatomical and physiological features, the CA3 region is believed to contribute to rapid encoding of novel information, formation and storage of arbitrary associations, novelty detection, and short-term memory. We report here that Dcx-KO adult males exhibit remarkably preserved hippocampal- and CA3-dependant cognitive processes using a large battery of classical hippocampus related tests such as the Barnes maze, contextual fear conditioning, paired associate learning and object recognition. In addition, we show that hippocampal adult neurogenesis, in terms of proliferation, survival and differentiation of granule cells, is also remarkably preserved in Dcx-KO mice. In contrast, following social deprivation, Dcx-KO mice exhibit impaired social interaction and reduced aggressive behaviors. In addition, Dcx-KO mice show reduced behavioral lateralization. The Dcx-KO model thus reinforces the association of neuropsychiatric behavioral impairments with mouse models of intellectual disability.


Assuntos
Região CA3 Hipocampal/patologia , Hipocampo/fisiologia , Memória/fisiologia , Proteínas Associadas aos Microtúbulos/fisiologia , Neuropeptídeos/fisiologia , Comportamento Espacial/fisiologia , Animais , Região CA3 Hipocampal/metabolismo , Discriminação Psicológica , Proteínas do Domínio Duplacortina , Proteína Duplacortina , Lateralidade Funcional , Humanos , Masculino , Camundongos , Camundongos Knockout , Neurogênese , Testes Neuropsicológicos , Participação Social
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...